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Abstract

We investigate the problem of designing survivable electricity distribution net-
works subject to multiple, non-simultaneous link failures under a radial-network oper-
ating con�guration. We formulate this problem as a two-stage stochastic mixed-integer
program in which �rst-stage decisions expand capacity; recourse decisions con�gure the
network to operate as a tree and to meet demand, by opening and closing electrical
switches. Dantzig-Wolfe decomposition of this formulation leads to (a) a master prob-
lem comprising binary capacity-expansion and high-level operating decisions; and (b)
mixed-integer, column-generating subproblems which represent deterministic capacity-
expansion models. A �super-arc representation� of the network signi�cantly reduces
the number of binary variables, and provides a tighter linear-programming relaxation
for the subproblems. Column generation with super-arc subproblems solves the model
signi�cantly faster than CPLEX can solve the original, extensive model.

1 Introduction

This paper focuses on the problem of designing survivable electricity distribution net-

works. These networks transport electricity from drop-o¤points of a high-voltage trans-

mission grid to local residential, commercial, and industrial consumers. In essence, dis-

tribution networks consist of (a) one or more power sources, i.e., drop-o¤ points where

the high-voltage electricity is stepped down through transformers to a lower voltage

for distribution, (b) demand points, (c) junctions, (d) switches, and (e) interconnecting

power lines. An urban distribution network may contain hundreds or even thousands of

such components. Such a network is �survivable�if it can recover from a �line fault,�

i.e., the failure of a cable or associated equipment.
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Distribution networks can be operated in several di¤erent con�gurations includ-

ing mesh, interconnected, link arrangement, open loop, and radial (Lakervi and Holmes

1995). We consider networks, with underlying mesh structure, that operate in a radial

con�guration. This con�guration is obtained by opening and closing switches at di¤er-

ent points of the mesh network, so that the connected network forms a tree with the

power source as its root node; multiple drop-o¤ points are treated as a single power

source. Thus, power must �ow from the power source to each demand point following

a unique path through the power lines, without exceeding line capacities or violating

voltage-drop standards.

Hundreds of thousands of industrial, commercial and residential customers may

rely on a distribution network to deliver power without interruption. A fault in a

major power line of such a network can disconnect thousands of customers and can

take hours or even days to repair. In the case of a radial con�guration, the failure of a

cable will disconnect all customers in the subtree served by this cable. This can cause

signi�cant disruption to customers� day-to-day operations and irretrievable �nancial

losses, as happened in Auckland, New Zealand in 1998 (CNN 1998).

In the event of a fault in a radial con�guration, the distribution company will

commonly reroute �ow to restore supply to customers as quickly as possible. (It may

be impossible to quickly identify and repair a fault, so rerouting is often the immediate

response; repair occurs later.) This rerouting is e¤ected by opening electrical switches so

as to isolate the faulted section, and then by closing switches to establish a alternative

path for power to �ow from the source to a¤ected customers. The rerouting amounts to

switching the radial con�guration from one tree topology into another. To enable this

switching, the company builds redundancy into the distribution network, in the form

of lines that are not used under normal circumstances, but are on hand to be used for

�recourse�, i.e., for recovering a working, radial con�guration. The full set of lines forms

the �underlying mesh structure.�

We say that a (mesh) distribution network is n � 1 survivable if it has enough
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capacity to reroute supply to customers in the case of a fault on any single line. It is

clear that any network with nodes of degree 1 will not be n � 1 survivable, but the

demands of many of these nodes are su¢ ciently small or remote that we can ignore

them for survivability purposes. These nodes and the �spur�lines that connect then to

the network can then be absorbed recursively into their upstream nodes, until all nodes

have degree at least two in the underlying network. In this process the demand at the

downstream nodes on these collapsed spur lines is aggregated and added to the demand

at the upstream node. We shall henceforth assume that the mesh networks we deal with

have no spur lines.

Industrial customers are willing to pay to ensure that the distribution network

they are connected to is n � 1 survivable, so we must ensure that it is and remains so

in the face of increasing demand. Our time frame is about one year, so the problem

we seek to solve is: given peak-demand estimates for one year hence, where should we

add capacity to ensure that the distribution network remains n � 1 survivable? (We

investigate longer-term capacity-planning models, with uncertain demands, in a separate

paper, Singh et al. 2004.)

A network design that is n� 1 survivable must be protected from a fault in any

one of a large number of di¤erent lines. For large networks this represents a formidable

number of random outcomes to plan for. In fact, given a radial con�guration, the

protection need only be from single faults in lines that form part of the tree, and in

practice the impact of failure will be greatest for lines that carry the largest amounts of

power. In radial networks these are the trunk lines (or simply �trunks�) that connect

each drop-o¤ point into the network. Flow cannot increase as it moves away from the

source, so a fault on a downstream line will interrupt no more power �ow than a fault

on the line�s unique, upstream trunk.

In general we expect the impact of failure to be greatest for lines that carry the

largest amounts of power, and so a good starting point for designing a network with

n� 1 survivability is to �rst protect the network against faults in the trunk lines. (The
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example that we solve in the sequel has 20 such lines.) In fact providing this level of

robustness often provides protection against failure in many other lines as a byproduct,

so a solution for trunk lines might turn out to be n � 1 survivable, or close enough to

allow a full solution to be constructed with minimal extra e¤ort. We return to discuss

this in the �nal section of the paper.

Installing capacity in the network requires substantial capital investments, and

gains from optimizing investments can be signi�cant. We can increase the capacity of

the network by:

1. installing cables along new routes; and

2. replacing an older cable on an existing route by a new higher capacity cable (re-

inforcement).

Installation of new cables, and even some reinforcements, can also require the

installation of ancillary equipment such as transformers and switches. We simply in-

corporate the cost of such equipment into the associated cable�s cost. Installation of

small-scale power generators at or near demand points represents an an alternative

form of capacity expansion which may become relevant in the future. We can model

such a generator as a dummy trunk that potentially connects the power source to the

generator�s connection point in the network, with a cost equal to that of installing the

new generator.

This paper develops a model and column-generation solution procedure to de-

termine capacity investments for an electricity distribution network so as to make it

n�1 survivable at least capital cost. This problem, which we denote SNDR (survivable

network design, radial con�guration), is essentially a two-stage stochastic mixed-integer

program. The �rst stage chooses capacity-expansion decisions for each line, or potential

line, in the distribution network. After this decision is made, a random outage is ob-

served, and the network is con�gured into a tree by closing and opening switches so as
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to meet demand, if this is possible. In its simplest form there are no probability distrib-

utions for this model� we must meet all customer demand in all failure scenarios� but

a version of SNDR with costs on unsatis�ed demand can be formulated that accounts

for failure probabilities.

Because of the complexity imposed by discrete capacity expansions and by the

discreteness of radial-con�guration requirements, SNDR must incorporate integer vari-

ables in both the �rst and second stages, along with continuous variables in the second

stage. Stochastic mixed-integer programs like this are notoriously di¢ cult to solve

(Schultz et al. 1995). Our column-generation approach represents a signi�cant advance

on the state of the art for solving such problems. We present results that show our

methods gives solutions in a reasonable amount of time for real-world problem instances

that general-purpose commercial solvers cannot solve.

Survivable network design has been much studied in the literature, predomi-

nately for telecommunications networks (e.g., Rajan and Atamturk 2004; Jothi and

Raghavachari 2004; Luss and Wong 2004; Rajan and Atamtürk 2002; Wessaly 2000;

Myung, Kim and Tcha 1999; Balakrishnan, Magnanti and Mirchandani 1998; Dahl and

Stoer 1998; Newport and Varshney 1991; and Gavish et. al 1989.). Much of this research

concerns the dimensioning of ring architectures for transmission networks that connect

exchanges or add/drop multiplexers (ADMs), where link failure causes a recourse switch-

ing of point-to-point tra¢ c around the opposite side of the ring. However, other research

(e.g., Monma and Shallcross 1989, Jothi and Raghavachari 2004) optimizes the design of

more general topologies with survivability implied through connectivity and/or capacity

constraints.

Column generation has been used for survivable network design in only a few

instances and again, the focus has been telecommunications networks. Wessaly (2000)

uses column-generation to solve a secondary path-�ow model that creates cuts for a

primary branch-and-cut algorithm. Dahl and Stoer (1998) take a similar approach, but

their primary algorithm is a cutting-plane algorithm. Rajan and Atamtürk (2002) model
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the capacity expansion of a network that routes multiple commodities, each representing

communication between a unique origin-destination pair. They use column generation

to generate the primary paths for the commodities as well as cycles for rerouting �ow

when edges fail. Rajan and Atamtürk (2004) solve the same problem with a formulation

that only requires column generation for cycles.

The use of column generation for solving stochastic integer programs is relatively

new: Lulli and Sen (2004) use branch and price (column generation plus branch and

bound) for stochastic batch-sizing problems; Shiina and Birge (2004) use column gen-

eration to solve a unit-commitment problem under demand uncertainty; Damodaran

and Wilhelm (2004) model high-technology product upgrades under uncertain demand

and use branch and price as a solution technique; and Silva and Wood (2004) present

an e¢ cient branch-and-price approach for a class of two-stage stochastic mixed-integer

programs. Our master problem and subproblems are signi�cantly di¤erent from those

used in any of these papers.

Our model, SNDR, is di¤erent frommost other survivable network design models.

It considers only a single commodity, electrical power, but must also incorporate model

constructs to select an operating, radial con�guration from the mesh network that it

designs, i.e., upgrades and/or expands. Survivability is handled by explicitly modeling

potential faults in a set of scenarios, rather than building �slack� into the system or

enforcing connectivity-type constraints. As in other models, SNDR can incorporate

multiple �technologies�for capacity expansion. From a modeling perspective, these just

represent di¤erent line capacities that might be installed between two network nodes,

each with a di¤erent cost. In reality, these can represent di¤erent cable sizes, the option

to replace an overhead line with an underground line, installation of a new cable plus a

transformer, etc.

For simplicity, SNDR ignores one practical consideration that is important for

some electricity distribution networks. In particular, it ignores voltage drops. We are

currently concerned with urban networks consisting primarily of underground cables
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where voltage drops are, in fact, negligible. SNDR will require re�nement for other

situations. We also assume that each edge will be expanded at most once in our plan-

ning horizon using a single technology (any mix of technologies can be modeled by an

appropriate labeling of a binary variable).

We note that Nara et al. (1994), Ramirez and Bernal (2001) and Ferreira et al.

(2001) do present models similar to SNDR, and they take voltage drops into account.

However, these authors o¤er only heuristics for their models�solutions.

The layout of the paper is as follows. The next section formulates SNDR mathe-

matically. Di¢ culty in solving this model motivates the column-oriented decomposition

and column-generation solution procedure described in section 3. The subproblem in

this procedure is a di¢ cult-to-solve mixed-integer program, however, and section 4 shows

how to ameliorate this di¢ culty with a condensed �super-network formulation.�Section

5 presents computational results and section 6 presents conclusions.

2 Formulation of SNDR

In an operating, radial con�guration of a distribution network, power must �ow from

the power source along unique paths to the demand points through power lines, without

exceeding those lines�capacities. Typically, each power line has two switches, one at

either end, which can be closed or opened to allow or disallow power �ow, respectively.

We refer to a power line with closed switches as active, and one with open switches as

inactive. A distribution network is operated in a radial (tree) con�guration by opening

and closing switches; only active power lines form the operating con�guration.

We model the underlying mesh structure of the network as a connected, undi-

rected graph G = (N ; E) consisting of a set of nodes i 2 N and a set of edges e 2 E

such that e = (i; j); where i; j 2 N and i 6= j: A node represents a demand point and/or

a junction; an edge represents a power line that connects adjacent nodes.

Power may �ow in either direction along a power line, and to model this we
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create a directed version of G, denoted G0 = (N ;K). The set of nodes in G0 is the

same as in G, but K replaces each edge e = (i; j) with two anti-parallel, directed arcs

(i; j) and (j; i). For edge e = (i; j), we de�ne Ke = f(i; j); (j; i)g, so we may also write

K = [e2EfKeg:

Actually, if we allowed negative �ows, the directed-network model would be

unnecessary. However, the directed model also enables constructs in the tree-forming

submodel that yield tighter linear-programming relaxations than do its undirected coun-

terparts (Magnanti and Wolsey 1995). Thus, computational e¢ ciency dictates the use

of the directed-network model.

We model the power source as node i0 2 N . Note that, in practice, any �ow on

the edges incident on i0 will always be directed away from it. Arcs directed towards i0

will always have zero �ow and can be excluded from the model.

We are concerned with a set of single-fault scenarios s 2 S. Each scenario corre-

sponds to the failure of a single edge e(s). For a network to be classi�ed as survivable, we

must be able to identify a capacity-feasible radial con�guration for G(s) = (N ; Ene(s))

for each s 2 S. Note that simulating a fault on an edge is equivalent to forcing it to be

inactive.

Figure 1 shows a model of a small distribution network. The solid and dashed

lines represent active and inactive edges, respectively. The active edges form the oper-

ating radial con�guration in which, for example, the �ow from node 1 to 3 corresponds

to �ow on arc k = (1; 3) and edge e7. The edges e1; e7; and e9 incident on the source

node i0 = 1, represent the trunks. A fault on e7 disconnects supply to node 3; the radial

con�guration can be restored and �ow rerouted to node 3 by activating e10. (The fault

on e7 would be isolated by opening switches not shown, located on that edge near its

endpoints.)

We are now ready to present a mathematical formulation of SNDR, which we

denote SNDR-0. The reader should note that this model is essentially a two-stage

stochastic program with a scenario representation of uncertainty, but with a special
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Figure 1: Model of small distribution network.

recourse function: the second-stage cost is 0 if all demand is met, and is in�nite if any

demand goes unmet.

Sets and Indices

i 2 N nodes in the distribution network.

e 2 E edges in the network

k 2 K anti-parallel arcs corresponding to E

k 2 Ke pair of anti-parallel arcs representing edge e

l 2 Le technologies available for capacity expansion of edge e

s 2 S single-edge fault-scenarios

i0 power source node

Data [units]

Aik 1 if k = (j; i), �1 if k = (i; j), and 0 otherwise

Cel cost of expanding capacity on edge e using technology l [$]

Di peak demand at node i [MVA]
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e(s) failing edge in scenario s

Ue0 initial capacity of edge e [MVA]

Uel additional capacity of edge e if installing technology l [MVA]

Ue maximum possible capacity for edge e [MVA]

Variables [units]

xel 1 if technology l is chosen for expanding edge e; and 0 otherwise

zks 1 if arc k is active (part of the operating radial con�guration) in

scenario s; and 0 otherwise

fks power �ow on arc k in scenario s [MVA]

Formulation for SNDR-0

min
x;z;f

X
e2E

X
l2L

Celxel (1)

s.t. fks � Ue0 +
X
l2Le

Uelxel 8e 2 E ; k 2 Ke; s 2 S; (2)

X
l2Le

xel � 1 8e 2 E ; (3)

X
k2K

Aikfks = Di 8i 2 N ; s 2 S; (4)

X
k2K:Aik=1

zks = 1 8i 2 Nnfi0g; s 2 S; (5)

X
k2K

zks = jN j � 1 8 s 2 S; (6)

fks � Uezks 8e 2 E ; k 2 Ke; s 2 S; (7)

zks � 0 8s 2 S; k 2 Ke(s) (8)

fks � 0 8k 2 K; s 2 S; (9)

xel 2 f0; 1g 8e 2 E ; l 2 Le; (10)
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zks 2 f0; 1g 8 k 2 K; s 2 S: (11)

The objective function (1) minimizes the total cost of capacity expansions. Con-

straints (2) ensure that the �ow through any edge does not exceed the edge�s total

capacity (initial plus added capacity). Note that Ue0 = 0 for new routes that are under

consideration by network planners. It would be uneconomical to increase the capacity

of an edge more than once during the model�s time horizon; constraints (3) impose

this restriction. Constraints (4) represent the standard Kirchho¤ current-balance (�ow-

balance) constraints at each node i. Constraints (5) and (6) enforce the radial operating

con�guration. Constraints (7) ensure that �ow is permitted on an arc k if and only if

arc k is part of the radial con�guration in scenario s, i.e., zks = 1; note that the max-

imum �ow possible on an edge equals the edge�s maximum acquirable capacity; thus,

with respect to constraints (3), it is su¢ cient to set the upper bound Ue = Ue0+ max

l2LefUelg. Finally, for each scenario s, constraint (8) simulates a fault on edge e(s) by

disallowing �ow on arcs k 2 Ke(s).

Unfortunately, for real-world problems (e.g., 152 nodes, 182 edges, 5 fault sce-

narios), this formulation results in a large mixed-integer program (MIP) with a poor

LP relaxation, and this MIP is intractable for at least one advanced solver, CPLEX 9.0.

The solution di¢ culties arise, no doubt, from the variable upper-bound constraints (7)

as well as the tree-con�guration constraints.

Some simple adjustments to this model can modestly tighten its LP relaxation,

but experience shows that these changes are insu¢ cient to yield a solvable model. We

require the more substantial improvements that accrue from a completely di¤erent for-

mulation of SNDR, a column-oriented one. This is the topic of the next section.
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3 A Column-Oriented Decomposition

Only the capacity-expansion constraints (2) in SNDR-0 link the fault scenarios. Because

of this, SNDR-0 has block-angular structure which motivates the use of a decomposition

approach. We use Dantzig-Wolfe decomposition as extended to integer variables (Ap-

pelgren 1969). This results in a multi-scenario, column-oriented master problem (MP).

For each scenario s; the master problem contains a collection of columns, each of which

represents a set of capacity expansions that are su¢ cient to operate the distribution

network for that scenario. We refer to capacity expansions de�ned by a column as oper-

ating expansions, and let the set Js represent all possible operating-expansion columns

for scenario s. The master problem also contains the capacity-expansion variables xel

and new variables wjs that represent the j
th operating-expansion column for scenario s.

For each scenario, a constraint forces the selection of exactly one column from the set of

possible operating expansions, and another set of constraints allows operating-expansion

columns to be selected only if the corresponding capacity expansions have been made.

Next, we present the formulation of the column-oriented master problem.

3.1 The Column-Oriented Master Problem

Sets and Indices

j 2 Js operating-expansion columns for scenario s

l0 2 Lel technologies applicable to edge e with capacity

at least as great as technology l

Data

Ajels 1 if operating expansion j expands edge e using technology l,

under scenario s, and 0 otherwise

Variables

xel 1 if edge e is expanded using technology l, and 0 otherwise

wjs 1 if operating-expansion column j is selected for scenario s, and 0 otherwise
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Master-Problem Formulation (MP)

min
x;w

X
e2E

X
l2Le

Celxel [dual variables] (12)

s.t.
X
l02Lel

xel0 �
X
j2Js

Ajelsw
j
s � 0 8e 2 E ; l 2 Le; s 2 S; [�els] (13)

X
j2Js

wjs = 1 8s 2 S; [�s] (14)

wjs 2 f0; 1g 8s 2 S; j 2 Js (15)

xel 2 f0; 1g 8e 2 E ; l 2 Le: (16)

The MP�s objective function (12) minimizes the capacity-expansion costs just

as the original model�s objective function does. The convexity constraints (14) select

exactly one column from the set of possible operating expansions for each scenario

s. Constraints (13) ensure that an operating-expansion column is not chosen for any

scenario unless su¢ cient capacity has been installed.

It is impractical to enumerate all possible operating-expansion columns in MP,

so we employ dynamic column generation: we generate columns �on the �y�through

optimization subproblems. To do this, we �rst create a restricted master problem (RMP)

containing a modest-sized subset of all possible columns. Let Js represent the current

subset of operating-expansion columns for scenario s.

The column-generation technique solves the LP relaxation of the RMP and ex-

tracts the corresponding optimal dual variables b�els and b�s from the master problem.

The column-generation subproblem then uses those values in an attempt to construct

one or more columns with negative reduced cost for the MP; separate subproblems can

be constructed for each scenario. If a favorable column is found, it is inserted into

the the RMP, which is then re-solved. The cycle of solving subproblems and master

problems repeats until no favorable column can be identi�ed. At that point, we know

that we have solved the LP relaxation of the MP, and if that solution happens to be
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integer, we have solved SNDR. (We refer the reader to Barnhart et al. (1998) for a

comprehensive discussion of column generation, and to Lübbecke and Desrosiers (2004)

for a compendium of column-generation applications.)

The subproblem for each scenario s contains the operational and demand con-

straints for the distribution network, as well as the fault-simulation constraint (8) spe-

ci�c to scenario s that forces the failed edge e(s) to be inactive, i.e., zks � 0; k 2 Ke(s):

In essence then, the subproblems represent single-scenario capacity-expansion problems

that �nd the minimum-cost capacity expansions for a distribution network that does

not contain the the failed edge e(s). (Of course, the costs are modi�ed by the cur-

rent dual variables.) Note that these capacity expansions are made with respect to all

distribution-network operating constraints, and hence our use of the term �operating

expansions�in the RMP.

3.2 Column-Generation Subproblem

We use the edge capacity expansions given by the subproblem (SP) solution to construct

the operating-expansion columns of the RMP. The SP formulation is the same as a

single-fault scenario SNDR-0 formulation, except that the objective of SP incorporates

dual-variable values b�els and b�s from the master problem. The subproblem is:

Subproblem Formulation (SP(s))

min
x;z;f

X
e2E

X
l2Le

b�elsxel � b�s (17)

s.t. (2)� (11) for �xed scenario s

We have successfully solved small problems using the column-generation tech-

nique outlined. And, we invariably obtain integer solutions for the optimized RMP, so

there seems to be no need for a complete �branch-and-price algorithm�to solve these

problems. (Branch and price embeds column generation within a branch-and-bound
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algorithm; see Barnhart et al. 1998. We discuss this general topic in more detail in

section 6.) For larger, real-world problems, the column-generating subproblems solve

in a reasonable amount of time in early iterations of the procedure, but these times

become prohibitive in later iterations. Other researchers observe a similar slow-down in

subproblem solution times as the dual variables converge to their optimal values (Van-

derbeck and Wolsey 1996). We overcome this di¢ culty with a stronger formulation of

the SNDR-0 subproblem, as described in the next section.

4 A Super-Network Formulation

In some integer-programming problems, a careful choice of the information that a vari-

able represents can signi�cantly tighten the LP relaxation of the the problem (Nemhauser

and Wolsey 1988, pp. 14-17). It is logical in SNDR-0 to have variables that correspond

to edges, but we will see here that a more compact representation of the network and

associated decisions variables leads to a tighter formulation. In particular, we will ex-

ploit the sparse nature of the distribution network�s underlying mesh structure along

with the requirement that the network operate as a tree.

4.1 The Super-Network

Many nodes in a distribution network will have degree of 2; we call these sub-nodes, and

refer to all nodes with degree 3 or greater as super-nodes. (All nodes with degree 1 have

been recursively collapsed into a sub-node or super-node.) LetM� N denote the set of

all super-nodes. We say that two super-nodes i and j are adjacent if they are joined by

a chain in which all nodes except i and j are sub-nodes. We denote this set of sub-nodes

by Nij and let Eij denote the edges in the chain joining i and j. In the super-network,

any chain joining two super-nodes i and j is represented by two anti-parallel super-arcs

k = (i; j) and k0 = (j; i). We say that the nodes in Nij and edges in Eij are spanned by
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the super-arc k (or k0).

To lllustrate, consider Figure 2(a) which extracts a small portion of the network

in Figure 1 (in whichM = f1; 3; 5; 6; 10g). That portion of the network contains super-

nodes 6 and 10 for which we de�ne E6;10 = fe3; e4; e5; e6g and N6;10 = f7; 8; 9g: Figure

2(b) shows the super-arcs k = (6; 10) and k0 = (10; 6) that span N6;10 and E6;10:

7766 10109988e4e3 e5 e6

66 1010

)6,10('=k

)10,6(=k

(a)

(b)

Figure 2: (a) Super-node pair 6 and 10 associated with edges E6;10 = fe3; e4; e5; e6g and
sub-nodes N6;10 = f8; 9; 10g: (b) The directed super-arcs k and k0 span edges E6;10 and
sub-nodes N6;10 in the super-network.

In SNDR-0, for a given scenario s, each edge e is represented by two �ow variables,

fks; k 2 Ke; two �tree variables� zks; k 2 Ke; and one capacity-expansion variable xel

for each l 2 Le. Thus, if jLej = 1 for all e 2 E6;10 in Figure 2(a), 20 variables in SNDR-

0 would result. In the super-network model below, SNDR-SN, there will be one �ow

variable and one tree variable for each super-arc, one capacity-expansion variable for

each spanned edge and one �break-edge variable,� described below, for each spanned

edge. Thus, the portion of the super-network shown in Figure 2(b) will only account for

12 variables.

To develop this model and underlying concepts further, we shall restrict attention

to the nontrivial case where jEijj > 1. Given a pair of adjacent super-nodes i and j; and

a feasible radial con�guration, we know that either:
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1. all edges e 2 Eij are active, or

2. exactly one edge e0 2 Eij is inactive.

For case 1), we know that power will �ow through all the edges in either one of

two directions, and we can model this as �ow on super-arcs. The �ow on either one

of these super-arcs represents a �ow on the corresponding edges e 2 Eij of the super-

network. By an abuse of notation, we refer to a super-arc with nonzero �ow as active,

and its anti-parallel partner as inactive.

For case 2), the inactive edge e0 �breaks the super-arc�in the sense that no �ow

through either super-arc (i; j) or (j; i) can occur. Now both super-arcs are said to be

inactive. We refer to the inactive edge as a break-edge. The dashed edge e5 in Figure

2(a) represents such an edge.

In addition to reducing the number of variables compared to SNDR-0, we will see

that the super-network representation eliminates the need for �ow-balance constraints

at the sub-nodes, resulting in a much smaller model. Furthermore, opportunities for

tightening the super-network model are easier to identify and implement.

4.2 SNDR-SN: A Super-Network Formulation of SNDR

Next, we present SNDR-SN, the super-network formulation of SNDR.

Sets and Indices

i 2 N nodes

m 2 M � N super-nodes (nodes with degree � 3)

k 2 A super-arcs (spanning super-nodes)

i 2 Nk � N sub-nodes spanned by super-arc k
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k 2 RSm all super-arcs entering super-node m (reverse star)

k 2 FSm all super-arcs leaving super-node m (forward star)

e 2 E1k edges spanned by super-arc k ([k2AE1k = E)

k 2 A1 super-arc k, with (k + 1)st super-arc in anti-parallel

k 2 A2 super-arcs k; which when broken, result in �ow that

forces an expansion on an edge e 2 E1k

e0 2 E2ke edges e0 2 E1k ; which when broken, result in �ow that forces

an expansion on the edge e 2 E1k

i0 source node (always a super-node)

m(k) tail super-node of super-arc k

m(k) head super-node of super-arc k

i(e; k) end node of edge e closest to m(k); e.g., for k = (6; 10)

and e = 4 in Figure 2, i(e; k) = 7.

Data [units]

Cel cost of expanding capacity on edge e using technology l [$]

Di peak demand at node i [MVA]

D1
k total peak demand for all sub-nodes between super-nodes m(k) and m(k)

[MVA], e.g., for k = (6; 10), D1
k =

P
i2N(6;10) Di

(see Figures 2 and 3)

D2
ek total peak demand for sub-nodes of arc k between m(k) and up to and

including sub-node i(e; k) [MVA], e.g., for k = (6; 10) and e = 5;

i(e; k) = 8) D2
ek = D7 +D8 (see Figures 2 and 3)
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Figure 3: Section of a network to illustrate some of the notation used in the super-
network formulation

Ue0 initial capacity of edge e [MVA]

Uel additional capacity on edge e if installing technology l [MVA]

Variables [units]

xel 1 if edge e is expanded using technology l, and 0 otherwise

bes 1 if edge e is inactive in scenario s, and 0 otherwise (break-edge variable)

zks 1 if super-arc k is active in scenario s, and 0 otherwise

fks �ow on super-arc k in scenario s [MVA]

Formulation (SNDR-SN)

(A one-line explanation of each constraint has been included to give the reader the

general idea of the constraint without having to refer to the detailed description that

follows the formulation.)

min
x;b;z;f

X
e2E

X
l2Le

Celxel (18)

s.t Maximum of one expansion for each edge:X
l2Le

xel � 1 8 e 2 E ; (19)

Super-arc �ow capacity-expansion constraints:

fks �D2
ekzks � Ue0zks +

X
l2Le

Uelxel 8s 2 S; k 2 A; e 2 E1k ; (20)
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Flow-balance constraints:X
k2RSm

(fks �D1
kzks)�

X
k2FSm

fks �
X

k2FSm

X
e2E1k

D2
ekbes = Dm

8s 2 S; m 2Mnfi0g; (21)

Exactly one edge spanned by a super-arc is broken or all edges are active:

zks + zk+1;s +
X
e2E1k

bes = 1 8 s 2 S; k 2 A1; (22)

Flow in tree (feasible con�guration):

fks � Ukzks 8 s 2 S; k 2 A; (23)

where Uk = min
e2E1k

�
D2
ek + Ue0 + max

l2Le
Uel

�
:

Tree constraint 1:X
k2A

zks = jMj � 1 8 s 2 S; (24)

Tree constraint 2:X
k2RSm

zks = 1; s 2 S 8 m 2Mnfi0g; (25)

Expansions due to breaks in super-arcs:X
e02E2ke

be0s �
X
l2Le

xel 8s 2 S; k 2 A2; e 2 E1k ; (26)

Fault-simulation constraints:

be(s)s � 1 8s 2 S; (27)

Domain restrictions on variables:

fks � 0 8k 2 A; s 2 S; (28)
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bes 2 f0; 1g 8e 2 E ; s 2 S; (29)

xel 2 f0; 1g 8 e 2 E ; l 2 Le; (30)

zks 2 f0; 1g 8 k 2 A; s 2 S: (31)

The objective function (18) minimizes the total cost of capacity expansion. Sim-

ilar to the previous formulation, constraints (19) allow at most one capacity expansion

on any edge.

This formulation does not explicitly model �ows on the edges. Instead, we com-

pute them using the super-arc �ows fks. To be more precise, the �ow on the �rst

edge that a super-arc spans equals the super-arc �ow fks; for super-arcs that span more

than one edge, the �ow on each edge is calculated by subtracting the upstream demand

D2
ek from the super-arc �ow fks; this is shown on the left-hand-side of the super-arc

capacity-expansion constraints (20). This forces expansion on an edge if the edge �ow

is greater than its initial capacity Ue0.

Constraints (22) and (23) ensure that when a break-edge e breaks a super-arc k

(bes = 1), then the corresponding super-arc �ow is zero. Furthermore, (22) ensures that

there is at most one active super-arc between any pair of super-nodes. It is important to

observe however, that if jE1k j > 1 and a break-edge e breaks a super-arc k; then fks = 0,

but (implicit) �ow on edges e 2 E1knfeg is likely to occur: In our model, a preprocessing

step adds a break-edge expansion constraint to the model when a break in edge e 2 E1k
results in a �ow on an adjacent edge e 2 E1k that exceeds edge e�s initial capacity Ue0.

These constraints force an expansion on edge e when there is a break on edge e: In

some instances when jE1k j > 1; breaks in several di¤erent edges e 2 E1k may result in the

creation of several break-edge expansion constraints for the same adjacent edge e 2 E1k .

In such cases, it is possible to aggregate these expansion constraints to derive a stronger

constraint, as in constraints (26).

We enforce �ow-balance constraints (21) only at super-nodes in SNDR-SN. These
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�ow-balance constraints have an additional ��ow-out�term (
P

k2FSm
P

e2E1k
D2
ekbes) that

constitutes the �ow needed to satisfy demand of sub-nodes up to the break-edge on each

inactive (�broken�) super-arc k 2 FSm.

Constraints (24) and (25) ensure that the super-network satis�es the radial con-

�guration requirement by forcing the set of active super-arcs (zks = 1) to form a �super-

tree�. Notice that similar to �ow-balance constraints, constraints (25) are also only

de�ned at super-nodes, which results in fewer constraints than in SNDR-0.

For each fault scenario s, constraint (27) simulates a fault on edge e(s) by break-

ing it, i.e., forcing it to be inactive.

4.3 Strengthening SNDR-SN

As mentioned earlier, we can pre-compute the minimum �ow on a super-arc if it is

used. This allows us to de�ne additional constraints which may tighten the model�s LP

relaxation. For example, if super-arc k is active, then the minimum �ow fks (which is

leaving m(k)) is bounded below by D1
k +Dm(k), i.e., the total demand for all subnodes

in Nk plus the demand at the head node m(k) of super-arc k. We use this information

to impose lower-bounding constraints such as:

fks � (D1
k +Dm(k))zks 8 s 2 S; k 2 A: (32)

In addition, we use this information to compute the minimum required �ow

through the edge e 2 E1k if super-arc k is used, and de�ne capacity-expansion constraints

that force expansions on edges e if the �ow on them exceeds their initial capacities Ue0:

Such constraints are de�ned by:

zks �
X
l2Le

xel 8s 2 S; k 2 A3; e 2 E3k ; (33)

where the set A3 represents super-arcs k; which when active, result in �ow that force

expansion on edges e 2 E1k ; and the set E3k denotes edges e 2 E1k requiring expansion if
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super-arc k 2 A3 is active.

Additional improvements in the LP relaxation are made by multiplying the coef-

�cients D2
ek and Ue0 by zks in the capacity-expansion constraints (20). (Constraints (2)

in SNDR-0 can also be strengthened by multiplying Ue0 with zks, but this yields only

minor improvements in solution times.)

We will demonstrate the advantages of the super-network constructs, and the

strengthening just described, in the following section.

5 Computational Experiments

This section demonstrates the relative computational performance of the models and

solution procedures described in this paper. We use the following abbreviations:

SNDR-0 the original, extensive model

SNDR-SN the super-network extensive model

SNDR-SNS SNDR-SN with strengthening as described in section 4.3

CG-0 column generation using subproblems derived from SNDR-0

CG-SNS column generation using subproblems derived from SNDR-SNS

All problem instances derive from data for a distribution network in New Zealand.

The actual network supplies power to an urban area that contains mostly large industrial

and commercial customers who pay extra fees for a high level of reliability, i.e., for an

n�1 survivable network. Planning is done such that the network remains survivable for

at least one year into the future. Thus, we use peak-demand data that is forecasted one

year forward. This forecast may include entirely new demand, e.g., a new residential

subdivision, and the data for such situations also describes possible routes for new cables

to serve that demand. These are instances of network edges with zero initial capacity.

The network data comprise 152 nodes, most of which are demand points, and
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182 edges. (The true network contains more nodes and edges, but spur lines have

been collapsed in the data.) Four demand points represent completely new demand,

and 14 edges represent completely new cable routes. The power source has 20 trunk

lines. Three of the trunks correspond to new cable routes. We model a single capacity-

expansion technology for each edge and consider faults only on trunks. The super-

network representation of this problem has only 32 super-nodes and 124 super-arcs. For

testing, a set of problem instances is obtained by varying the number of fault-scenarios,

each of which corresponds to the failure of a single trunk line.

We solve (attempt to solve) all problems using a desktop computer with a Pen-

tium 4, a 2.6 GHz processor, and 1 GB of RAM. We generate all models, and implement

our decomposition algorithms within the Mosel algebraic modeling system, version 1.24,

from Dash Optimization. The LP master problems are solved with the Xpress-MP

version 14.24 LP solver, also from Dash Optimization, but the MIP subproblems and

extensive models are solved with CPLEX, version 9.0 from ILOG, Inc. All problems are

solved with a relative optimality tolerance of 0.05% and each run is limited to 7,200 sec-

onds. Our column-generation algorithm incorporates the duals-stabilization procedure

described by du Merle et. al (1999). Solver settings are constant throughout. All MIPs

are solved with default parameter settings except that Gomory cuts are turned o¤ and

a moderate level of probing is used (CPX_PARAM_PROBE = 2).

Table 1 displays computational results for 12 di¤erent problem instances. We

attempt to solve each instance with the �ve solution approaches outlined above. The

results summarize easily. The super-network model for SNDR, SNDR-SN, is faster than

the original model SNDR-0, and the strengthened super-network model SNDR-SNS is

faster yet. Column generation with strengthened super-network subproblems (CG-SNS),

is vastly more e¢ cient than the other solution methods, and results listed under �CG-0�

provide clear evidence that the the strengthed super-network constructs are critical to

this e¢ ciency.
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Fault Scenarios SNDR-0 SNDR-SN SNDR-SNS CG-0 CG-SNS

(number) (CPU sec.) (CPU sec.) (CPU sec.) (CPU sec.) (CPU sec.)
1 5.1 4.5 2.1 11.3 4.1
2 102.8 7.6 7.5 116.9 35.4
3 458.8 135.1 21.9 224.6 92.9
4 - 2249.3 211.4 1122.0 381.5
5 - 1789.9 2039.0 - 617.4
6 - - 762.3 - 441.1
7 - - 3331.5 - 683.4
8 - - 5285.1 - 2378.5
9 - - - - 2240.4

10 - - - - 4612.4
15 - - - - 1542.4
20 - - - - 1174.0

Table 1: Solution times for SNDR-0, SNDR with an unstrengthed
super-network formulation (SNDR-SN), with a strengthened super-network
formulation (SNDR-SNS), column generation with subproblems based on
SNDR-0 (CG-0), and column generation with subproblems based on

SNDR-SNS (CG-SNS). A dash indicates the problem cannot be solved in
under 7,200 seconds.

We also note the strength of the LP relaxations of SNDR-0, SNDR-SN and

SNDR-SNS. For the �rst three problems, which all three can solve, the optimal LP

objective value for SNDR-SN improves 4.5% over SNDR-0�s, and that improvement

is 98.2% for SNDR-SNS. Both these numbers and the results in the table show that

the super-network formulation contributes to e¢ cient solutions of SNDR, but that the

additional strengthening is critical for success.

6 Integer Solutions and Fractional Solutions

For the full-scale problem instances we have solved, �nal LP solutions are invariably

integral. Consequently, we have not required a full branch-and-price solution procedure.

It is interesting to note, however, that fractional solutions are possible; Figure 4 displays

one such instance.

We believe that the master problem is NP-complete, in general, and that the

optimal integral solutions we observe must result from an interplay between structure
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x 1 x 2 x 3 x 4 x 5 x 6 w 1
1 w 1

2 w 2
1 w 2

2

e 1 1 -1 0 ≥ 0
e 2 1 0 -1 ≥ 0
e 3 1 -1 0 ≥ 0
e 4 1 0 -1 ≥ 0
e 5 1 0 0 ≥ 0
e 6 1 0 0 ≥ 0
e 1 1 0 -1 ≥ 0
e 2 1 -1 0 ≥ 0
e 3 1 -1 -1 ≥ 0
e 4 1 0 -1 ≥ 0
e 5 1 0 0 ≥ 0
e 6 1 0 0 ≥ 0
s= 1 1 1 = 1
s= 2 1 1 = 1

Figure 4: An RMP with a fractional optimal solution. With unit cost for each capacity
expansion, the optimal solution sets all variables to 1/2.

and costs. We are still investigating these issues. If the need should arise, we are

prepared to implement branch and price using code based on the COIN-OR libraries

(Ralphs and Ladanyi 2001) as developed by Silva and Wood (2004).

7 Conclusions

We have described a model, SNDR, along with several formulations, for the design of

survivable electricity distribution networks. The model may be viewed as a two-stage

stochastic program with a special recourse function. We have also developed a column-

generation procedure for solving one of the formulations e¢ ciently. The e¤ectiveness of

this solution procedure relies heavily on modeling improvements that strengthen the for-

mulation of the column-generation subproblems. These improvements involve modeling

the network structure through a condensed construct, a �super-network,�which leads to

smaller subproblems with tighter linear-programming relaxations. This super-network

lends itself to further strengthening.
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Opportunities exist to increase the speed of this algorithm even further. For

instance, variable upper-bound constraints (e.g., constraints (7)), controlled by binary

variables tend to produce fractional solutions in the subproblems if upper bounds on

arc power �ows are not tight. These bounds can be improved by approximately solving

deterministic variants of SNDR that maximize arc �ow. Preliminary experiments show

that this preprocessing does, indeed, improve the algorithm�s performance, and at an

acceptable computational cost.

In our computational experiments, we have restricted attention to faults on trunk

lines. We have no guarantee that protection against any trunk fault will provide n� 1

survivability. However, it is interesting to observe the decrease in computational e¤ort as

the number of fault scenarios increases. In these cases, many of the solutions to scenario

subproblems return null columns after early column-generation iterations, indicating

that the current solution is feasible in this scenario. As more fault scenarios are added

we expect this behavior to become more common. This raises the possibility of solving

SNDR starting with a few scenarios and then adding violated scenarios �on the �y.�

Preliminary experiments with this approach have shown promise.

SNDR represents single failures on lines using scenarios. Recourse decisions

recon�gure the underlying mesh network, without the faulted line, into an alternative

radial (tree) topology. The cost of this recourse is 0 if a feasible con�guration can

be found, and is in�nity otherwise. A possible extension of SNDR would admit the

possibility of shedding customer load as a recourse decision in the event of a line failure.

If we (a) let vis represent the amount of load shed at node i under scenario s, (b) let qi

denote the unit penalty for shedding at i, (c) modify demand (�ow-balance) constraints

to admit penalized load-shedding, and (d) let ps denote the probability of scenario s,

then we can create a standard two-stage stochastic program having objective function

min
X
e2E

X
l2L

Celxel +
X
s2S

ps
X
i2N

qivis;

where the �rst term represents �rst-stage capacity costs and decisions, just as in SNDR.
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This objective minimizes capacity-expansion costs plus expected penalties. Our

column-generation solution procedure, i.e., Dantzig-Wolfe decomposition, follows through

for this model, except that the super-network improvements may no longer be valid. In

particular, a super-arc being active no longer forces minimum �ow quantities through

the edges it spans, and thus the �ow on each individual edge may need to be tracked.

We conclude by remarking that the column-generation technique for SNDR can

be extended to a multi-stage capacity-expansion planning model. In its simplest form

this has a scenario-tree representation of uncertainty in demand and no link failures, giv-

ing a restricted master problem that is a multi-stage stochastic mixed-integer program.

(The multi-stage problem with deterministic demand and link failures has been studied

by Kuwabara and Nara 1997 who describe a heuristic solution procedure.) Like the

RMP above, many instances of this problem have naturally occuring integer solutions,

so it is amenable to solution by standard techniques for stochastic linear programming

(see Birge and Louveaux 1997, pp. 155-197). The subproblems are identical to SP(s),

and can be strengthened using the �super-network approach�. The details of this im-

plementation and its computational performance are described in Singh, Philpott and

Wood (2004).
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